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The unsteady two-dimensional heat-transfer problem of melting around a horizontal 
heated cylinder is studied numerically. The cylinder is heated isothermally. A 
physical model is introduced which accounts for the effects of density change upon 
melting and subcooling effect, as well as natural convection. Most previous work has 
assumed that the density number (ratio of solid density to liquid density) is unity. 
In  practice, all solid materials exhibit some density change upon melting. If the 
density number is greater than one, this induces a blowing effect at the phase-change 
boundary. If the density number is less than one, a suction effect is produced. This 
study indicates that the density-change effect on heat transfer during melting is 
minor. Subcooling results when the solid is at a temperature below the melting 
temperature. When the melting process begins, some of the available thermal energy 
must be used as sensible heat, to raise the solid's temperature to the melting point. 
As a result, less thermal energy is available for melting. Subcooling effects are found 
to have a substantial effect on the heat-transfer process. The effects of natural 
convection have been clearly documented, and indicate that natural convection must 
be included in any realistic model of the melting process. Detailed predictions of the 
effects of density change and subcooling on the melting process are given. Information 
on the temperature and flow fields for representative values of Stefan, Rayleigh, 
Prrtndtl, subcooling and density number is given. Further results from the numerical 
solutions include information on local and average heat-transfer rates and sensible- 
heat gain as well as melt volume as a function of time. Comparisons are made with 
earlier numerical and analytical results. 

1. Introduction 
Heat transfer with solid-liquid phase-change is encountered often in modern 

technology. Examples range from the solidification of castings, to ice formation and 
melting, and the ablation of surfaces due to aerodynamic heating (e.g. spacecraft 
re-entry). More examples are found in the purification of materials, in the freeze 
drying of foodstuffs, and in geophysics. Solid-liquid phase-change problems involved 
in low- and moderate-temperature thermal-storage systems are also of keen interest 
in our energy-conscious world. Typically, these thermal-storage problems occur in 
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solar-energy applications and in spacecraft thermal-control systems. This study solves 
the problem of melting about an isothermally heated horizontal cylinder. 

Initially, the horizontal cylinder is completely surrounded by solid phase-change- 
material (PCM). At time zero, the cylinder surface temperature is suddenly raised 
above the melting point of the PCM, and heat transfer from the cylinder to the PCM 
begins. Instantaneously, an infinitesimal melt region forms. This sudden appearance 
of liquid phase introduces a singularity into the governing equations at time zero 
(Carslaw & Jaeger 1962; Rubenstein 1971). The singularity is removed by using 
appropriate scales for the dependent variables. If this is not done, an ad hoc starting 
method must be used which begins the computation away from time zero. The errors 
which such methods introduce are discussed in Prusa & Yao (19843). 

Since the melt volume increases with time, the position of the liquid-solid interface 
is unknown a priori for times greater than zero. The interface is consequently another 
dependent variable in the problem. Complicating matters even further are the 
effects of natural convection in the melt region. Such effects have been observed 
experimentally by Bathelt, Viskanta & Leidenfrost (1979), Sparrow, Schmidt & 
Ramsey (1978) and Goldstein & Ramsey (1979). In these studies, the melting region 
grew most rapidly above the heated horizontal cylinder. This produced an elongated 
melt region with the heated cylinder towards the bottom. The melt region appeared 
symmetrical with respect to the vertical. Natural convection, driven by the change 
in fluid density due to temperature gradients in the melt region, forms two 
antisymmetric vortices. The local heat-transfer rate along the interface is maximum 
at the top of the melt region, where a thermal plume impinges. This causes the higher 
rate of melting at the top of the melt region. The effect of natural convection in 
producing a non-uniform interface has also been demonstrated analytically by Yao 
& Chen (1980), and Yao & Cherney (1981) ; and numerically by Ramachandran, Gupta 
& Jaluria (1982), Saitoh & Hirose (1982), Rieger, Projahn & Beer (1982), Sparrow, 
Patankar & Ramadhyani (1977) and Prusa & Yao (1984~).  This non-uniform moving 
boundary is handled in the present study by using a coordinate-transformation 
method (Yao & Chen 1980; Yao & Cherney 1981; Sparrow et al. 1977; Prusa 1983) 
to generate a natural coordinate system which is precisely aligned with it. 

Although it is generally becoming recognized in the heat-transfer community that 
natural convection has important effects upon the melting process, the effects of 
subcooling and density change upon melting are still largely unknown and ignored. 
Yao & Cherney (1981) determined a short-time solution - incorporating subcooling - 
for the melting of a solid about a heated horizontal cylinder. Using an integral method, 
the solution is based upon the insight that, for a small interval of time after the start 
of melting, conduction is the dominant mode of heat transfer. Although the length 
of this interval depends upon several factors, a criterion which may be used to define 
it is the initial interval of time during which local heat-transfer rates are uniform. 
Subcooling was found to reduce the rate of melting and suppress natural-convection 
heat transfer. This occurs because some of the thermal energy which is available must 
be used to raise the solid PCM temperature to the melting point. This effect is 
enhanced if the thermal diffusivity of the solid is greater than the thermal diffusivity 
of the liquid because the solid is then able to diffuse thermal energy away more 
quickly. Yao & Cherney’s solution indicates that the subcooling effect can be quite 
large - up to a 50 % reduced melting rate-in this initial interval of time. NO 
information on the subcooling effect is available for times beyond the initial interval 
for which the integral solution is valid. The effects of density change upon melting 
are even less well known than subcooling effects. Ho & Viskanta (1982) experimentally 
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FIGURE 1.  Physical model for melting problem. 

detected fluid motions early in the melting process in a rectangular cell. They 
attributed i t  to the density change that accompanies phase transformation. Epstein 
t Cheung (1983) also mention the importance of refining models for melting so that 
the effects of density change can be incorporated. No results on these effects are 
mentioned, however. 

The present work is motivated by interest in demonstrating the effects of 
subcooling and density change on the melting of a solid PCM. A numerical method 
is used to determine the solution, which is valid over any arbitrary interval of time. 
Consequently, the effects of subcooling can be determined throughout the melting 
process, well beyond the initial interval in which conduction is the dominant mode 
of heat transfer. 

2. Analysis 
The physical model considers a horizontal heated tube which is embedded in solid 

PCM. The heated tube is in an arbitrarily shaped shell which contains the PCM (see 
figure 1). The tube and containing shell are infinite in their axial extent. Using polar 
coordinates, the independent variables are then radius f ,  angular coordinate $, and 
time i. The heated tube has its radius denoted by a, while the inner radius of the 
containing shell is denoted by S($) .  E($) denotes the thickness of the shell. A 
convective boundary condition is used along the outside of the shell. The solid PCM 
is originally at  a uniform temperature of T,, which may be below the melting 
temperature T,. The ambient atmosphere surrounding the shell is also at temperature 
T,. At  time zero, the heated cylinder's surface temperature suddenly increases to 
temperature T,, which is greater than T,, and the melting process begins. As solid PCM 
melts, its density may increase, decrease or remain unchanged. 

A vorticity-stream-function approach is used to model the fluid motion in the melt 
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region. The stream-function is defined so that the continuity equation is satisfied 
identically : 

where T i  and i7 are the radial and angular components of velocity. The change in stream 
function between two points in the flow field can be seen to be equal to the volume 
flow rate between these two points. All material properties are considered constant, 
with the exception of liquid-PCM density, which is allowed to vary in the buoyancy 
terms of the momentum equations. The unsteady fluid motion induced by buoyancy 
force is assumed to be laminar. The dependent variables are liquid-PCM temperature 
q, vorticity W, stream function f, and solid-PCM temperature T,; they are all 
functions of the independent variables f ,  $ and f. These dependent variables may be 
determined by solving the following system of simultaneous governing equations : 

Equation (1 a) represents conservation of vorticity in the viscous flow of liquid PCM, 
( 1  b) is conservation of thermal energy in the liquid PCM while ( I d )  is conservation 
of thermal energy in the solid PCM. Equation ( l c )  may be considered to be the 
definition of the streamfunction. v, and a, are the kinematic viscosity, the 
coefficient of expansion, and the thermal diffusivity, respectively, of the liquid PCM; 
a, is the thermal diffusivity of the solid PCM; g is the local acceleration of gravity. 
Note that the buoyancy-force term in ( 1  a) is approximated by the Boussinesq form. 
Therefore the change in density which produces the buoyancy force must satisfy 
Apl/pl 4 1 to ensure the validity of the solution. p1 denotes the density of the liquid 
PCM. The Jacobian terms represent convection effects while the V2 operator 
represents diffusion effects in ( 1  a d ) .  

2.1. Liquid-solid interface location 
The radius of the liquid-solid interface R is the fifth dependent variable in the 
phase-change problem. A governing equation can be determined for it by considering 
an energy balance in a control system at the interface. The result is found to be: 

where 

kl and k, are the liquid- and solid-phase thermal conductivities, respectively, p, is the 
solid-PCM density and h,, is the latent heat of fusion. Conduction heat transfer 
through the liquid-solid interface occurs in a direction normal to it as it is isothermal 
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(at the melting temperature). Since the interface between the liquid and solid phases 
is not necessarily a circle centred on the pole, rays of constant 3 are not generally 
normal to it. The appearance of the ap//a$ terms in (1 e) is the direct result of this. 
The first term in parenthesis represents conduction in the liquid, while the second 
term gives the solid heat-conduction effect. The vorticity, streamfunction and energy 
equations for the liquid and solid PCM provide sufficient governing equations, when 
coupled with (1 e), to determine all of the dependent variables. 

2.2. Initial conditions 

At  time t = O+, the heating of the solid phase begins. Instantaneously, a concentric 
annular melt region of infinitesimal thickness appears around the heated cylinder. 
This sudden appearance of liquid phase corresponds to a singularity in the governing 
equations at time zero. In  the initial conditions, this is manifested in the form of 
temperature discontinuities : 

q>q>q a t F = a ;  ( 2 4  

E = T o  a t F = a  and Z = T ,  fo rF>a ;  (2b) 

W = f =  0 if p. = 1 or W andfare unbounded if p. =k 1;  (2 c) 
P1 P1 

R = a. ( 2 4  

It is interesting to observe that, if a change in density occurs during melting, the 
blowing or suction velocity which results must become unbounded as f + O .  This 
accounts for the unusual initial condition for 55 andf. That this is actually correct can 
be observed by examining the initial singularities which exist in the governing 
equations and boundary conditions at time zero. 

2.3. Boundary conditions 
Along the heated cylinder, a no-slip boundary condition leads to the traditional 
formulation for vorticity and stream function (Roache 1976). Along the interface, 
however, the hydrodynamic boundary conditions are complicated both by the 
non-uniform growth and by the blowing or suction effect caused by density change 
during melting. 

If there is no density change during melting, then the fluid velocity at the interface 
is zero. The PCM does not move along with the interface. Physically, solid PCM at 
the interface is motionless as it is melted (Yang 1972). The liquid PCM which results 
is also momentarily motionless until the hydrodynamic boundary layer which is 
following the interface passes it by. 

If a density change does occur, then a non-zero velocity results at the interface. 
A mass balance on a control volume at the interface demonstrates that the interface 
velocity is: 

= R(  1 -$/( 1 +%) (radial component); 

- - R  vR = uR - R (angular component). 

The interface boundary condition for the stream function can now be determined in 
terms of the interface velocity if it is remembered that the change in stream function 
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between two points equals the volume flow rate. The boundary conditions for the 
liquid region can now be summarized as: 

f= 0, at?= a ;  

R'Z f 
(tangential gradient along the interface) ; (4c )  

GIR af = {X'R-%}/('+F) R . 

-p f at ? = R (all terms retained) ( 4 4  

The thickness of the container wall is assumed to be small in comparison to its 
radius so that a linear temperature distribution can be used for it. Both the inner 
radius of the container wall S and the wall thickness ii may be arbitrary functions 
of 8. A convective boundary condition with a specified value of convection coefficient 
h($) is used on the outside surface. On the inside surface of the container, the 
temperature and local heat flux are matched between solid PCM and container 
material. The boundary conditions for the solid region can now be summarized as : 

z - q  a t ? = R ;  ( 5 4  

and 

k, denotes the thermal conductivity of the container wall. 

2.4. Dimensionlese formulation for liquid region 
The radial coordinate in the liquid region is non-dimensionalized so that the outer 
boundary formed by the liquid-solid interface, at ? = R, is transformed into the unit 
circle, rl = 1. The inner boundary, ? = a, is transformed into the pole, rl = 0. This 
constitutes the coordinate transformation. In dimensionless form, the radial distance 
from the inner cylinder to the interface is measured by the gap function 2. When 
the cylinder is heated so as to maintain a constant surface temperature, a singularity 
in the governing equations at time zero appears which is of order d. Consequently, 
to remove it from the governing equations, t f  is factored out of the gap function. The 
coordinate transformation then takes on the following form : 

(coordinates) ; 
?-a - t 

rl = - aZ(2t)f' $ = $7 t = - 
a"% 

R-a 
Z = -  (gap function). 

a(2t)f  

If the PCM changes density upon melting, then additional singularities appear in 
the governing equations at time zero. Since these singularities are present only when 
there is initial fluid motion (due to density change), we will term them convection 
singularities. The convection singularity for the streamfunction is also of order d, that 
is, the stream function becomes unbounded like t - f  as t + O .  The convection singularity 
for vorticity is of order d. Consequently, vorticity becomes unbounded much faster 
than the stream function as t+O. In  order to remove these convection singularities, 
d and ti are factored out of the dimensionless stream function and vorticity. The 
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temperature is scaled using the temperature difference between the heated cylinder 
and the melting temperature. The following dimensionless variables result : 

gsas(Tf-T,) (Rayleigh number). (Sf,g) Pr = - (Prandtl number) ; Ru = 
V 

a1 V a l  

Equations (6a-e) are substituted into the dimensional governing equations for the 
melt region and, after some algebraic simplification, the following dimensionless 
governing equations result : 

Note the appearance of the differential operator N,. It represents the effects of the 
irregular curvature of the interface. N, vanishes if the interface is a circle centred 
on the pole. The implicit partial differentiation of the transformation also causes a 
second type of term to appear in the dimensionless equations. This is the r a/& term 
which appears on the left-hand sides of (7a, b). This term introduces the effects of 
the movement of the interface into the dimensionless governing equations. On the 
right-hand side of the conservation of vorticity equation (7a) a vorticity source term 
appears. It originates from the unsteady term and appears because of the convective 
singularity in vorticity a t  time zero. 

The dimensionleas boundary conditions are found by substitution of the dimen- 
sionless variables into the dimensional boundary conditions : 

and 

I = 2'(2t):vR-"1+Z(2t)!]u,, 
311- 
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where 

- (2t)i 2tZ'u, 
VR = vR- = - 

al/a 1 + Z(2t)i' 

and A = P,/P,. (8f 1 
2.5. Dimemionless formulation for solid region 

The radial coordinate in the solid region is non-dimensionalized so that the inner 
boundary formed by the liquid-olid interface, at C = R, is transformed into the unit 
circle, rs = 1. The outer boundary, F = S, is transformed into the pole rs = 0. This 
coordinate transformation is completely analogous to the one used for the melt region. 
In dimensionless form, the radial distance from the solid-liquid interface to the outer 
shell is measured by the gap function C. The coordinate transformation for the solid -~ 

region is then: 

(coordinates) ; 
S-C - t 

r = -  +=+, t = -  
aC ' a2/a1 

C = (S-  R) /a  (gap function). (9b) 
We scale the dimensionless solid temperature using the temperature difference 

between the melt temperature and the ambient temperature. For the solid PCM, the 
appropriate dimensionless variables are : 

T- T, ha 
%-T, k, 

T,=- ; Bi = - (Biot number) ; 

The conservation-of-energy equation for the solid region is non-dimensionalized 
using (9) with the following result : 

where 

ac ac 
W' a+2 at 

and d=-. C" = - a w  c'=- 

The dimensionless initial condition for the solid-region temperature is : 

at timet = O + ;  T, = 1 & r g =  1, and T, = O  forallr,, OGr, < 1. ( lob)  

The dimensionless boundary conditions are : 

I T,= 1 a t r g =  1, 
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2.6. Dimensionless formulation for the liquid-solid interface 
The equation for the solid-liquid interface location (1  e )  is non-dimensionalized using 
appropriate scalings from both liquid and solid regions, (6) and (9). After some 
rearrangement, this results in a governing equation for 2, called the gap-function 

where Ste = 2 (Stefan number), 
P s  h S l  

k To-T, 
&=A- (subcooling number). 

kl T,-% 
c1 denotes the specific heat of the liquid PCM. 

2.7. Dimemiomless initial conditions for the liquid region 
The dimensionless initial conditions for the melt region are determined by letting 
t = O+ in the governing equations ( 7 )  and (11) and the boundary conditions (8). This 
results in a reduced set of partial differential equations, of which the solution is the 

subject to the boundary conditions 
i ay 

Z2 ar; 
T , = l ,  f = O ,  w = - - -  a t r l = O ;  

T,= 1 a t r l = l ;  
1 ay 

Z2 art' 
T,=o,  -- 

a $ - - U R '  w =  --- 

(12 c-d)  

T , + O  asrl-+oo, (W 
where uR = Z ( l  - A ) .  Note that (12) are only first order in $. 

If there is no density change upon melting (A = l ) ,  then the initial condition 
becomes simple enough to determine analytically. There is no initial fluid motion and 
the q9 dependence drops out of (12), resulting in ordinary differential equations. The 
solution is: 

at t = O+ (infinitesimal melt region exists); 

T, = 1 - erf{rl 2/24} erf {z/&), o = f = 0, (13a, b )  

erf { rl Z /  ( 2 ~ ) t )  - erf {Z/ (2h)t) 
erfc { ~ / ( 2 A ) 4 }  

T , = l -  1 
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Initial condition (13d) needs to be solved iteratively; once the initial 2 value has 
been determined, the initial values for T may be computed. Equations (13a, c, d) are 
the analytical solution as first determined by Stefan and Neumann (Carslaw & Jaeger 
1962; Rubenstein 1971). 

With the exception of boundary conditions in $, (6)-(13) now provide a complete 
formulation of the problem. In the present case, symmetry boundary conditions are 
used : 

For large values of Ra, of order lo6 to lo8, an unsteady oscillating motion of the 
thermal plume may develop (Bathelt et al. 1979; Goldstein & Ramsey 1979; Sparrow 
et al. 1978). The value of Ra = 37500, used in the present numerical computations, 
is low enough that the symmetry boundary condition (14) is justified. The numerical 
method could be modified to determine solutions for large values of Ra by extending 
the computational domain to the whole unit circle, from $ = 0" to 360". The 
symmetry conditions along $ = 0" and 180' would then be replaced by matching the 
dependent variables a t  $ = 0" and 360". 

3. Results and discussion 
Three main cases are examined and compared with each other in order to discern 

clearly the effects of subcooling and density change on the heat-transfer rates, melting 
rates and flow fields. In all three cases Sta = 0.02, Ra = 37500, Pr = 50 and h = 1. 
These values are typical for a melting problem using paraffin for the PCM. Bi is set 
equal to 1. This value is typical for natural convection along the outside of the 
container. The thermal conductivity of the container-wall material is assumed to be 
much greater than that of the solid PCM, K = 0.01. This is reasonable for metallic 
containers. Finally, the shape of the container is specified as a circular cylinder with 
Z = 3 and e = 0.01. Each of the three cases uses the preceding values of dimension- 
less parameters: only Sb and A are changed in each case: 

Case 1 :  S b = 0 ,  d = 1, 

Case2: S b =  1,  d = 1 ,  

Case 3: S b  = 0 ,  d = 1.1. 

The first case represents the control for comparison purposes. In  the second case, 
Sb = 1 indicates a strong subcooling effect. The solid is initially subcooled below the 
melting temperature by the amount by which the heated cylinder surface is above 
the melting temperature (approximately). In case 3, A = 1.1 indicates that the solid 
PCM is 10% denser than the liquid phase. This magnitude of change is typical for 
paraffins, such as n-octadecane. 

3.1. Subcooling effect 
The main effect of subcooling - a decrease in melting rate - is clearly demonstrated 
in figure 2. Here the melt regions for Sb = 0 and Sb = 1 are compared at a 
dimensionless time of 14.1. The location of the liquid-solid interface can be calculated 
from the liquid-region gap function : 

= 1 +2(2t)i. (15) a 
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FIQURE 2. Decreaae in growth of the melt region due to subcooling effect. 
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FIGURE 3. Subcooling effect on average heat-transfer rates and melt volume. 

Since the subcooled solid requires some sensible-heat gain in order to raise it to the 
melting temperature, less thermal energy is available for melting. Additional energy 
is lost because it is conducted completely through the solid PCM, and convected away 
into the ambient atmosphere. The net result is that the subcooled case has a melt 
region which is 23 % smaller by volume. 

Figure 3 gives additional evidence in support of this interpretation. It gives the 
ratio of the dimensionless volumes of the melt region for the cases Sb = 0 and Sb = 1. 
These volumes are denoted V,, and V respectively, and are determined by the volume 
integration : 

[1+2(2t)i]'d$-l. (16) 
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The volume ratio is less than one and decreases with time. At  around t = 3, increased 
thermal losses to the ambient atmosphere cause the curve to drop more sharply. This 
sudden drop may also be due, in part, to natural convection which becomes the 
dominant mode of heat transfer at about this point. The nsagnitude of natural 
convection is proportional to the Rayleigh number which uses the width of the melt 
region as a lengthscale (Yao t Chen 1980). Since the subcooled melt region is smaller 
than in the case which is not subcooled, natural convection is weaker in the subcooled 
case. Figure 3 also gives information on the average dimensionless heat-transfer rates 
- along the heated cylinder and liquid-solid interface. They are denoted by Nu, and 
Nu,, respectively, and are determined by integrating the local dimensionless 
heat-transfer rates along the cylinder and interface : 

and 

where 

and 

Num[l+Z(2t)~]dll,; 

NU = (local Nusselt number), 
k(T, - T,) 

Physically, F, is the average dimensionless radius Ravela, €or the liquid-solid 
interface. Figure 3 compares these dimensionless average heat-transfer rates with the 
Sb = 0 case by plotting the ratio Nu/Nu,. Nu, is the corresponding dimensionless 
heat-transfer rate along the cylinder or interface for the Sb = 0 case. 

Consider a/- for the interface. At  first, this ratio is seen to be greater than 
one and steadily increasing. The average heat-transfer rate is greater with subcooling 
than without it. This effect, also observed by Yao & Cherney (1981), is interesting 
because the melt volume is lessened by subcooling. Apparently - the thermal energy 
used for solid sensible-heat gain contributes enough to Nu, to more than make up 
for the reduced latent-heat gain. The increase in average heat-transfer rates makes 
sense if one considers the simple electrical analogy - subcooling increases the overall 
thermal potential to T, - T,. The monotone increase in Nu/Nuo along the interface 
is abruptly terminated at about t = 3, when natural convection becomes the 
dominant mode of heat transfer. In  the subcooled case, natural convection is weaker 
and, corresponding to this, the heat transfer drops off. At about t = 8, the ratio 
bottoms out a t  a value still larger than one and begins to rise again. A t  this point, 
the natural-convection flow field in the subcooled case has matured, and is now 
asymptotically approaching the case of natural convection about a horizontal 
cylinder in an infinite fluid. 

The behaviour of the dimensionless heat-transfer ratio for the cylinder surface is 
quite similar. The only qualitative difference occurs near t = 8, when the natural- 
convection flow field matures. Here, the ratio keeps on decreasing, although not as 
rapidly as in the early convection stage. This is in marked contrast to the heat-transfer 
ratio for the interface, which increases. 

Thermal energy enters the melting system along the cylinder surface. The total 
dimensionless energy which enters is denoted by El. It may be determined by 
integrating the average heat-transfer rate along the cylinder surface in time : 

_ _  - 

_ -  

(18a) 
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Here is given by (17a)..The choice of characteristic scale for energy is the amount 
of energy required to melt a volume of solid (at the melting temperature) equal to 
the volume of the heated cylinder. For example, if Sb = 0 and there is no liquid 
sensible-heat gain, when El = 1 then V = 1 also. With the choice of characteristic 
scale for energy, the latent-heat storage is easily evaluated in dimensionless form. 
Denoted by E2, i t  is: 

The liquid sensible-heat gain, denoted by E3, can be found using a volume integration 
to determine the excess thermal energy in the liquid: 

E2 = V .  (18b) 

E3 = 2 Ste Z(2t)i [l +r1Z(2t)i] dr, d+. 
x 0 0  

The solid sensible-heat gain, denoted by E4, can be found in similar fashion : 

Finally, energy may leave the system by convection on the outside of the container 
wall. Denoted by E5, this energy loss may be determined in dimensionless form by: 

where 

(local dimensionless heat-transfer rate at  the container wall), 

and 

F, is an average dimensionless radius Savela for the inside surface of the container. 
Note that El = E2 + E3 + E4 + E5 (assuming that the sensible-heat gain of the 

container wall is negligible), and that this sum may be used as an energy-balance 
check for the numerical method. Since the governing equations ere formulated in 
non-conservative form, an energy balance provides a real check for the global 
truncation error of the method. In  the actual computations the energy balance 
remained within 1.5 % of unity. 

Figure 4 shows the transient response of the melting system in terms of sensible- 
and latent-heat storage. The latent-heat storage E2 is seen to be only slightly less than 
the total energy input to the system El. E, is about 85% of El initially, and then 
slowly decreases to 75% of El by t = 14.1. The sensible-heat gain of the solid PCM 
E4 involves an order of magnitude less thermal energy. Initially, E4 is about 13 % of 
El - it  makes up the bulk of the difference between El and E2, but note that E4 
levels off at about t = 3. At this point, the melt region is growing fast enough so that 
the increase in E4 due to rising solid temperature is offset by a decrease due to reduced 
solid volume. The net effect is that E4 drops off to about 3 % of El by t = 14.1. The 
liquid-PCM sensible-heat gain E3 is seen only briefly in the lower right corner. E3 
involves two orders of magnitude less thermal energy than El. The liquid sensible-heat 
gain never accounts for more than 0.8 yo of the total energy at any time. This indicates 
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FIGURE 4. Variation of sensible- and latent-heat storage 
with time when subcooling effect is present. 
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FIGURE 5. Solid PCM temperature along container wall. 

the great efficiency of natural-convection heat transfer. For Ra < 37500, it is 
anticipated that E3 will become more significant. For Ra > 37500, the liquid 
sensible-heat storage is negligible. The convection heat loss on the outside surface 
of the container is insignificant until a dimensionless time of 0.1 is reached. Before 
this time, thermal energy from the heated cylinder has not yet reached any portion 
of the container wall. The solid-PCM temperature near the wall is still essentially at 
the original subcooled temperature T,. By t = 0.3, enough energy has penetrated to 
the container wall to raise the solid-PCM temperature there by 1 %. This is enough 
to cause a convection loss of about 0.03 yo of El. The convection loss increases very 
rapidly as the solid warms up. E5 accounts for 1.4 % of El at t = 1, and about 21 % 
of El at t = 14.1. At this point, the outer convection loss is so severe that the latent- 
heat storage of the system is reduced significantly. 

Figure 5 shows the temperature response of the solid with time. It gives the 
dimensionless solid temperature along the container wall, at rs = 0. In figure 5, T, = 0 
corresponds to the original subcooled temperature, while T, = 1 corresponds to the 
melting temperature. Note that temperatures at interior points in the solid PCM (for 
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rs > 0 )  will be greater. As mentioned in the discussion of figure 4, negligible thermal 
energy has penetrated to the container wall before t = 0.1. By t = 0.3, enough energy 
has reached the wall to raise the solid-PCM temperature by 1 %. After this point, the 
temperature increases rapidly with time. The temperature profiles remain quite 
uniform up to a time of 4.2. For later times, the solid-PCM temperature is noticeably 
warmer at $ = 180' than at $ = 0". This difference becomes quite large by t = 14.1. 
The uniform profiles result because conduction is initially the dominant mode of heat 
transfer in the melt region. This produces uniform local heat-transfer rates and an 
annular melt region (Prusa & Yao 1984a, b). By t = 3, natural convection has become 
the dominant mode of heat transfer in the melt region. A thermal plume forms above 
the heated cylinder. The local heat-transfer rate along the interface becomes very 
large at $ = M O O ,  above the cylinder, and very small at $ = O', below the cylinder. 
As a result, solid PCM above the cylinder gets warmer and melts sooner than solid 
material elsewhere in the system. It is natural convection which causes the non- 
uniform temperature profiles in figure 5. Note that, although convection becomes the 
dominant mode of heat transfer in the liquid by t = 3, the temperature profile at rs = 0 
does not become appreciably skewed until t = 8.8. This is due to a thermal inertia 
effect : it takes the non-uniform energy flow that long to travel through the solid PCM 
from the liquid-solid interface to the container wall. 

3.2. Demity-change effect 
The effect of density change on the melting process is most pronounced very early 
in the conduction stage. All effects decrease very rapidly with time for the case 
A = 1.1, when compared with the standard case where A = 1.0. The effects which 
are most notable involve the flow field. Surprisingly, almost no effect was observed 
on the temperature field or heat-transfer rates, which are observed always to be within 
0.02% of each other. Since detailed information on the temperature fields and 
heat-transfer rates is given in Prusa & Yao (1984b), the information is not repeated 
here. 

Our surprising numerical result is supported by an order-of magnitude analysis 
of the early convection effect on the heat-transfer problem. From (12b) and the 
definition of the stream function, it can be shown that the convection effect due to 
density change is 0(Z4( 1 -A)). From the numerical result, it appears that the initial 
value of 2 is not affected by density change (at least for case 3). Consequently, the 
initial value of 2 is still given by (13d), which when expanded in a power series has 
a leading term of Stet. We then conclude that, for early times, for values of Ste which 
are not large: 

Apparently, a significant early convection effect on heat transfer can be expected only 
for large Ste and values of A appreciably different from unity. Further support of this 
conclusion comes from an integral solution (Prusa 1986). The integral method 
incorporates the effects of density change in a one-dimensional melting problem. It 
predicts the same result as (19). 

Because the specific volume of the liquid is greater than that of the solid PCM, for 
A = 1 .l, the melting process introduces excess fluid volume into the melt region. This 
excess volume cannot remain in the melt region because the fluid is modelled as being 
incompressible. In  order to allow the excess volume to escape, a 'hole' is introduced 
into the melt region. This opening appears as a natural consequence of the 
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stream-function boundary condition (8b)  along rl = 1.  The symmetry BC (14) requires 
that no 0uid can 00w across the rays $ = 0", 180". Since the heated cylinder is 
impermeable, the stream function must be the same constant on all three boundaries. 
But (8b) indicates that f either increases (A > 1) or decreases (A < 1) along the 
liquid-solid interface. (This non-uniform stream function BC has a precedent in 
boundary-layer theory with suction, see Schlichting (1979).) This means that a 
discontinuity in the value off must occur somewhere along the interface. The physical 
meaning of this discontinuity can be understood with the following argument. Let fT;-z = j R  djdenote the change in streamfunction across the discontinuity (the line 
integral is evaluated along the interface). The integral can be expressed in terms of 
the components : 
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where the first integral on the r.h.s. is evaluated along a line of constant 3, and the 
second integral is evaluated along a line of constant f .  Now, from the definition of 
streamfunction, one obtains : 

Clearly, these two integrals on the r.h.s. give a volume flow rate across the line of 
integration. Consequently, the stream-function discontinuity is a hole through which 
fluid may escape (or enter if A < 1). The choice for the location of the hole, or holes, 
is arbitrary. In  the present study, we have set it at the top of the melt region, at 
f = 180". This position corresponds to the location of a tube or slot sometimes placed 
in an experimental melting system in order to allow excess fluid to leave the melt 
region (Gau & Viskanta 1984). Since the fluid motion induced by density change has 
negligible effect on the heat-transfer problem, the location of the hole appears to be 
an unimportant factor in this aspect of the melting problem. Note that this negligible 
effect also means that the loss of fluid from the melt region does not seriously disturb 
the energy balance described in the preceding section. In fact, as long as the hole is 
located on the solid-liquid interface, escaping fluid is at the melting temperature !Po, 
and has no sensible heat to carry away. There is no effect at all on the energy balance. 
But even if the hole is located on the heated cylinder (a hole could be drilled through 
its surface and excess fluid drained through it), so that the escaping fluid is at the 
temperature T,, the thermal loss would still be negligible. This result is indicated by 
the integral solution (Prusa 1985). In  the integral method, excess fluid can escape 
only through the heated surface, which is permeable. Consequently, the fluid escapes 
from the melt region with the maximum sensible heat possible. This boundary 
condition was chosen so that the effects of density change on the heat-transfer 
problem would be exaggerated as much as possible. Despite this exaggerated 
boundary condition, for Ste = 0.02 and A = 1.1, the integral method predicts a 
decrease in melting rate of only 0.05 yo. Furthermore the integral method predicts 
that, in the range 0 < Ste < 1, the maximum change in melting rate (compared 
to the A = 1 case) is bounded by: 

(i) 2.0% for 0.9 < A < 1.1 and (ii) 10.Oyo for 0.55 < A < 1.60. 

The location of the hole does have an overwhelming influence on the initial flow 
field, however. The variation of average dimensionless shear stresses along the heated 
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FIGURE 6. Density-change effect on average shear stresses: (a)  average shear stresses early in the 
melting process when conduction is the dominant mode of heat transfer; (b)  average shear stresses 
late in the melting process when natural convection is the dominant mode of heat transfer. 

cylinder and liquid-solid interface with time are shown in figure 6. They are denoted 
by and x, respectively, and are determined from: 

and 
1 + Z(2t)f 

Note that the shear stresses become unbounded like t-! as t+O. 
& approach constants of equal 

but opposite magnitudes a,s t+O. This behaviour can be explained by interpreting 
From figure 6(a), it can be seen that d and 
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the average shear stresses in terms of the velocity field. Note that (21a, b) collapse 
into 

and 

as t + O .  Along rl = 0, w = 0 (no-slip BC) and along rl = 1, w = 0 again. w = 0 along 
rl = 1 because for the blowing BC, wR a 2. From the numerical result 2' = 0 a t  
t = 0. Since excess fluid volume produced by melting must move out through the 
'opening' at $ = 180°, w > 0 on average. Since v = 0 at rl = 0, 1, symmetric unimodal 
velocity profiles are produced. This causes the velocity gradients in (21c, d) to 
approach values which are of equal but opposite magnitudes as t + O .  This simple 
initial fluid motion begins to become modified significantly for t > 0.01. This is 
indicated in figure 6 (a) by the average shear stresses dropping off sharply for t > 0.01. 
The drop-off is caused by natural convection, which becomes significant for t > 0.01. 
By t = 0.1, natural convection has become as strong an effect on the fluid motion as 
the density change. At t = 1, natural convection has become a much stronger effect, 
while the density-change effect has continued to decrease like t-! as t+ m. The effect 
of natural convection with density change is indicated by the A = 1.0 curve. This 
curve approaches zero asymptotically from below as t --f 0. 

Although figure 6 (a) clearly shows the early behaviour of the average dimensionless 
shear stress, it  does not clearly indicate that for A = 1.1, are rapidly 
converging to the < and values for the A = 1.0 case. This is clearly seen in 
figure 6(b), which uses 7 rather than rti as the vertical coordinate. By t = 1.0, the 
average shear stresses for the two cases are within 1 % of each other. Since the only 
perceptible effect of density change appears to be in the flow field, the d = 1.1 
calculation is terminated at this point. For t > 1.0, there will be only a negligible 
difference when compared to the A = 1.0 case. 

Figure 7 presents more detailed information on the effects of density change on 
the flow field. It gives velocity profiles for the angular component of velocity w along 
selected rays of constant $. The dimensionless time is t = 0.1, which is still early in 
the melting process. Conduction is overwhelmingly the dominant mode of heat 
transfer. The annular melt region is greatly expanded in figure 7, the true position 
of the liquid-solid interface being indicated by the dashed boundary. The density- 
change effect has decayed enough while the natural-convection effect has increased 
enough so that both factors are roughly of comparable magnitude at t = 0.1. This 
can be observed from the velocity profiles. Natural convection will act to produce 
S-shaped velocity profiles, with w > 0 near the heated cylinder and w < 0 near the 
interface. This is due to the vortex circulation induced by buoyancy force. Fluid rises 
along the heated cylinder, and descends along the interface. Recall that density 
change will act to produce symmetric unimodal velocity profiles, with v > 0. The 
interaction between these two effects produces the profiles seen in figure 7. The w 
profile at $ = 33.5" is closest to the pure natural-convection profile, while the profile 
at $ = 166.8" is closest to the pure density-change profile. As $ increases from 0, 
more and more excess volume is being added locally due to melting. As a result, the 
fluid must move towards the top at  increasing speeds in order to conserve volume 
locally. Eventually, the density change overwhelms the buoyancy effect. Later on 
in the melting process, this density-change effect will have decayed greatly, while 

and 
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FIQURE 7. Density-change effect on angular component of velocity. 

natural convection will have increased greatly. All velocity profiles will look like pure 
natural-convection profiles. The density effect will be only a minor perturbation. The 
one exception will be in a very small region - the local neighbourhood of the hole. 

4. Conclusions 
Subcooling is found to decrease substantially the latent-heat storage of the melting 

system. However, the solid sensible-heat gain can be enough to completely offset this 
loss. Consequently, subcooling can actually increase the overall rate of heat transfer 
and the overall energy storage. The liquid sensible-heat gain is found to be negligible 
for Ra > 37500. A large energy loss due to convection along the outside surface of 
the container was observed, surprisingly with a very modest value of convection 
coefficient (corresponding to natural convection). 

Density effect upon melting is found to have a negligible effect on the temperature 
field and heat-transfer rates in the melting problem. In  an incompressible-fluid model, 
it does introduce tremendous fluid motion in the beginning of the melting process, 
as excess fluid rushes out of the melt region (for A > 1) through the hole in the 
interface. As t + O ,  the magnitude of the fluid motion becomes unbounded. As t + 00, 

this magnitude decreases (like t-' in the case of v, the angular velocity component) 
and approaches zero asymptotically. At the same time, fluid motion induced by 
buoyancy force increases as t+ 00. Early in the melting process, a point is reached 
where the two effects are roughly of the same magnitude. Beyond this time, natural 
convection soon overwhelms the effects of density change, which then become 
negligible. 
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